EXCEL APPLICATIONS
10 Steps for Database Developers

Sergey Vaselenko
This e-book shows how to create feature-rich database client applications using Microsoft Excel. As a database developer, you may create such applications with the SaveToDB add-in using SQL knowledge only.
Introduction

The SaveToDB add-in allows creating database client applications using Microsoft Excel. Moreover, application features are being configured in a database and extended using SQL. So, using the add-in is the best choice to create client applications for database developers. As a database developer, you may apply your current skills to create amazing Excel applications. I believe we help developers realize their potentials, build a successful career and make users happy.

Here are the basic steps to create a complete client application using Microsoft Excel:

1. Connect to tables, views, and stored procedures
2. Configure validation lists
3. Configure ribbon parameters
4. Translate field, parameter, and object names
5. Configure formats, formulas, and table views
6. Configure saving changes
7. Add cursors and form fields
8. Create master-detail forms
9. Configure detail windows and task panes
10. Configure context and action menus

In this book, we start with a new Excel workbook and finish with a ready-to-use application.

You have to download and install the SaveToDB add-in, version 7.2 or higher, at www.savetodb.com. All features described in this book are available in the free SaveToDB Express edition.

You may download example workbooks and SQL codes at https://www.savetodb.com/download.php?file=10-steps-for-database-developers.zip

This book contains an example database for Microsoft SQL Server hosted in Microsoft SQL Azure Database. You may also use Oracle Database, IBM DB2, MySQL, PostgreSQL, and others. The steps remain the same.

Best regards,
Sergey Vaselenko
March 20, 2017
Table of Contents

- Introduction .. 1
- Table of Contents .. 2
- Chapter 1. Example Database .. 3
- Chapter 2. Excel as Table Editor .. 4
- Chapter 3. SaveToDB Framework Installer ... 7
- Chapter 4. Configuration Workbook .. 10
- Chapter 5. Tables with Foreign Keys ... 12
- Chapter 6. Query Parameters ... 15
- Chapter 7. Column Name Translation ... 17
- Chapter 8. Object Name Translation .. 20
- Chapter 9. Table Views .. 21
- Chapter 10. Table Format Wizard ... 25
- Chapter 11. Framework Query List .. 27
- Chapter 12. Configuring Views .. 30
- Chapter 13. Configuring Stored Procedures ... 33
- Chapter 14. Configuring Saving Changes .. 35
- Chapter 15. Cursors ... 39
- Chapter 16. Form Fields ... 40
- Chapter 17. Master-Details ... 41
- Chapter 18. Detail Windows and Task Panes .. 45
- Chapter 19. Context Menus ... 49
- Chapter 20. Actions Menus ... 51
- Conclusion ... 52
- About the Author .. 53
- Appendix 1. Database Source Code ... 54
Chapter 1. Example Database

We will create an Excel application for a simple database that contains several tables, a view, and a procedure:

- The database objects belong to the **dbo67** schema.

The tables have the following relations:

- **Payments (dbo67)**
 - ID
 - Date
 - Sum
 - AccountID
 - ItemID
 - Comment

- **Accounts (dbo67)**
 - ID
 - Name

- **Companies (dbo67)**
 - ID
 - Name

- **Items (dbo67)**
 - ID
 - Name

We have three master tables and the **dbo67.Payments** table with foreign keys.

The **dbo67.viewPayments** view and **dbo67.uspPayments** stored procedure select data from the Payments table.

You may find a complete source code with comments and download links in **Appendix 1**.
Chapter 2. Excel as Table Editor

Let’s create a new workbook and save it as payments.xlsx.

Then let’s run the Data Connect Wizard and connect to the Companies table.

Follow wizard steps. At the following screen, uncheck Enable Query List on the ribbon.
Insert a table at cell B3.

We may edit data, add and delete rows. Then just click the **Save** button to save changes.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ID</td>
<td>Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Carnation, Inc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>Cornflower, Corp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Corporate Tax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>Income Taxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>Land, Inc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>Rose, Inc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>Salary Taxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>Water, Inc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let’s customize the design:

1. Click on a table. Select the **Design** tab. Select the desired design in the **Table Styles** gallery.
 I prefer White, Table Style Medium 15.
2. Right click on the selected design and click **Set as Default**.
3. Uncheck **Bunded Rows** in the **Table Style Options** group.
4. Select the **View** tab. Uncheck **Gridlines** in the **Show** group.
5. Select cell A4 and click **Freeze Panes** in the **Window** group.
6. Rename the worksheet to **Companies**.

Repeat the steps for the **Items** and **Accounts** tables.

Now we have the workbook that allows editing master tables.
Chapter 3. SaveToDB Framework Installer

You may use Microsoft Excel as a table editor by default.

To use advanced features, we have to install the SaveToDB Framework to a database.

Run the SaveToDB Framework Installer:

Follow wizard steps.
At this screen, you see SaveToDB Framework objects:

These objects allow configuring SaveToDB add-in behavior.

You may remove framework objects using the same wizard. So, this is an entirely safe operation.
At this step, you see the SaveToDB Framework code. Click **Execute** to install it.
Chapter 4. Configuration Workbook

We have added SaveToDB Framework to a database.

Now we may use Microsoft Excel to edit framework tables. Run Configuration Workbook Generator:

At this screen, you see SaveToDB Framework configuration tables:

When you click Finish, the SaveToDB add-in generates a workbook.
You may generate it again at any time. However, let’s save it as payments-configuration.xlsx for further use.
Chapter 5. Tables with Foreign Keys

Let’s add a worksheet, rename it to Payments, and connect to the Payments table.

As expected, we see foreign key values. Let’s change this.

Switch to the payments-configuration workbook, select the EventHandlers worksheet and add the configuration:
Click the Save button to save the configuration.

Let’s switch to the Payments worksheet and click Reload, Reload Data and Configuration:

The add-in replaces id values with names and adds validation lists:
Moreover, the add-in activates the separate **List Editor** that allows users to select values from large lists in a comfortable way using search.

You may turn on/off the **List Editor** using the **Options, Show List Editor Task Pane** option.

Let’s change a couple of rows in the table and click the **Save, View Save Changes SQL**.

In my case, the add-in generates the following SQL commands:

As we may see, the SaveToDB add-in uses id values instead of names as it should be.
Chapter 6. Query Parameters

Let’s make our table more interactive. Run **Reload, Configure Query Parameters**:

Check the AccountID, CompanyID, and ItemID fields in the **W** (WHERE) column:
The SaveToDB add-in places the selected fields to the ribbon. So, our users may filter data:

Let’s choose Rose, Inc.

This feature allows working without auto-filters and loading fewer data.
Chapter 7. Column Name Translation

The Payments table shows fields in the table and at the ribbon like AccountID, CompanyID, and ItemID.

Let’s change these database field names to business names.

Switch to the payments-configuration workbook, select the ColumnTranslation worksheet and add the data:
Then switch to the payments workbook and click **Options**:

Choose the **Default data language** as English and click **OK**.

Of course, in your applications, you may use any language or even multiple languages.
Click **Reload, Reload Data and Configuration**.

The add-in shows Account, Company, and Item instead of AccountID, CompanyID, and ItemID.

You may turn off this feature in the **Options** dialog box as described above.
Chapter 8. Object Name Translation

We have translated field names. Also, we may translate database object names shown in Excel.

Switch to the payments-configuration workbook, select the ObjectTranslation worksheet and add the data:

Then return and click Reload, Reload Data and Configuration. Now we see business names everywhere.
Chapter 9. Table Views

Users often apply different filters to loaded data, hide and unhide columns, sort in various ways, etc.

The SaveToDB add-in may help to save such user views and even share them with colleagues.

Let’s remove all WHERE filters and click the Save Table View button in the Table Views group:

Type All Payments and click Save.
We see the name of the current view, All Payments, in the Table View field.

Type >0 in cell E2.

The add-in applies the filter to the Sum column.

This is a reason why it is better to insert tables at cell B3.

Users may use row 2 (as a row over the table) as auto-filters. Also, they may place formulas in row 1.

Let’s continue and save the view as Incomes (click the Save Table View button again):
Type <0 in cell E2.

The add-in applies the new filter to the Sum column.

Save the view as Expenses.
Remove the filter in cell E2 and apply the **Incomes** view:

![Excel screenshot showing the Incomes view applied to the data]

As we may expect, the add-in applies the saved filter to the Sum column.

I am sure, your users will be happy, and you will have fewer requests for new small database views.
Chapter 10. Table Format Wizard

We have formatted tables and added views in the previous steps in the payments.xlsx workbook.

If a user connects to a database from a new workbook, he will have Excel defaults. We can fix this publishing table formats and views to a database using **Table Format Wizard**.

Let’s format the Sum column, set default column widths, apply the default table view and run the wizard:

In the wizard, select all tables and click the *Save in Database* button:
The wizard saves formats and changes its state:

Now, users will get the same formats, views, and formulas of the tables when they connect to a database.

Use the wizard to republish new views later.

Users may use the **Restore from Database** button to reload the updated views.
Let’s create a worksheet, name it as **Reports** and connect to the **viewPayments** view.

The **Select Object** screen has significantly changed since the last connection:

It includes much more objects and additional columns like **Translated Name** and **Description**.

First of all, **Translated Name** and **Description** are shown as we added the SaveToDB Framework, added the object translation, and selected English in the **Options**. This feature helps users to understand database objects better.

The second, the wizard shows installed SaveToDB Framework objects.
Select the **Framework Query List** item in the **Select Query List** combobox, and the wizard displays source objects:

- **Y**ou may filter objects, also. Type **pay**, for example.

Let’s select the **dbo67.viewPayments** view and leave **Enable Query List on the ribbon** checked.
Let’s check the AccountID, CompanyID, and ItemID in the **W** column, and insert the view at cell B3.

We see a new feature. The ribbon **Query List** allows us to change the query.

This is a very useful feature. Users may use a few worksheets to work with multiple database objects.

Moreover, when developers add new objects to a database, users just reload the query list and can connect.
Chapter 12. Configuring Views

We have connected to a view:

Good news:
1. We can save changes (as the view is updateable).
2. We can use ribbon parameters to filter data.

Bad news:
1. We see foreign key values instead of names in columns and ribbon parameters.
2. We see AccountID, CompanyID, and ItemID in columns and ribbon parameters.
3. We see the dbo67.viewPayments database name in the Query List.
4. The table is unformatted.
5. There are no predefined table views.

Let’s fix the “bad news.”
Replacing foreign keys values with names

Switch to the payments-configuration workbook, select the EventHandlers worksheet, copy and paste three rows of the Payment table, and change Payments to viewPayments in the TABLE_NAME field. Click Save.

<table>
<thead>
<tr>
<th>ID</th>
<th>TABLE_SCHEMA</th>
<th>TABLE_NAME</th>
<th>COLUMN_NAME</th>
<th>EVENT_NAME</th>
<th>TABLE</th>
<th>HANDLER</th>
<th>HANDLER_CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>dbo67</td>
<td>Payments</td>
<td>AccountID</td>
<td>ValidationList</td>
<td>dbo67</td>
<td>Accounts</td>
<td>TABLE</td>
</tr>
<tr>
<td>27</td>
<td>dbo67</td>
<td>Payments</td>
<td>CompanyID</td>
<td>ValidationList</td>
<td>dbo67</td>
<td>Companies</td>
<td>TABLE</td>
</tr>
<tr>
<td>28</td>
<td>dbo67</td>
<td>Payments</td>
<td>ItemID</td>
<td>ValidationList</td>
<td>dbo67</td>
<td>Items</td>
<td>TABLE</td>
</tr>
<tr>
<td>29</td>
<td>dbo67</td>
<td>viewPayments</td>
<td>AccountID</td>
<td>ValidationList</td>
<td>dbo67</td>
<td>Accounts</td>
<td>TABLE</td>
</tr>
<tr>
<td>30</td>
<td>dbo67</td>
<td>viewPayments</td>
<td>CompanyID</td>
<td>ValidationList</td>
<td>dbo67</td>
<td>Companies</td>
<td>TABLE</td>
</tr>
<tr>
<td>31</td>
<td>dbo67</td>
<td>viewPayments</td>
<td>ItemID</td>
<td>ValidationList</td>
<td>dbo67</td>
<td>Items</td>
<td>TABLE</td>
</tr>
</tbody>
</table>

It is easy. We just copied the existing Payments table configuration.

Translating column names

Select the ColumnTranslation worksheet, copy and paste three rows of the Payment table, and change Payments to viewPayments in the TABLE_NAME field. Click Save.

<table>
<thead>
<tr>
<th>ID</th>
<th>TABLE_SCHEMA</th>
<th>TABLE_NAME</th>
<th>COLUMN_NAME</th>
<th>LANGUAGE</th>
<th>TRANSLATED_NAME</th>
<th>TRANSLATED_DESC</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>dbo67</td>
<td>Payments</td>
<td>AccountID</td>
<td>en</td>
<td>Account</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>dbo67</td>
<td>Payments</td>
<td>CompanyID</td>
<td>en</td>
<td>Company</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>dbo67</td>
<td>Payments</td>
<td>ItemID</td>
<td>en</td>
<td>Item</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>dbo67</td>
<td>viewPayments</td>
<td>AccountID</td>
<td>en</td>
<td>Account</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>dbo67</td>
<td>viewPayments</td>
<td>CompanyID</td>
<td>en</td>
<td>Company</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>dbo67</td>
<td>viewPayments</td>
<td>ItemID</td>
<td>en</td>
<td>Item</td>
<td></td>
</tr>
</tbody>
</table>

Translating object names

Select the ObjectTranslation worksheet and add the translation for viewPayments and uspPayments:

<table>
<thead>
<tr>
<th>ID</th>
<th>TABLE_SCHEMA</th>
<th>TABLE_NAME</th>
<th>LANGUAGE</th>
<th>TRANSLATED_NAME</th>
<th>TRANSLATED_DESC</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>dbo67</td>
<td>Accounts</td>
<td>en</td>
<td>Accounts</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>dbo67</td>
<td>Companies</td>
<td>en</td>
<td>Companies</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>dbo67</td>
<td>Items</td>
<td>en</td>
<td>Items</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>dbo67</td>
<td>Payments</td>
<td>en</td>
<td>Payments</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>dbo67</td>
<td>uspPayments</td>
<td>en</td>
<td>Payments (sp)</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>dbo67</td>
<td>viewPayments</td>
<td>en</td>
<td>Payments (view)</td>
<td></td>
</tr>
</tbody>
</table>
Now we can switch to the payments workbook, click the **Reload, Reload Data and Configuration** button, and the **Reload Query List** button in the **Query List** group. We see that we have fixed the first three points.

Now we can format the table, add the required table views, and save them to a database using the **Table Format Wizard**, as described in the previous topics.

After these steps, users will get the same preconfigured and formatted view from a database.
Let’s select the Payments (sp) object in the Query List, a shorter way of Data Connection Wizard.

We see the same points as for the view in the previous chapter:

- Foreign key values instead of names in columns and ribbon parameters;
- AccountID, CompanyID, and ItemID in columns and ribbon parameters;
- Unformatted table;
- No predefined table views.

Plus:

1. The ribbon parameters have no value lists.
2. We can’t save the changes.

We already know the way to solve the first group issues.

Here is a configuration for the validation lists to replace id to names:
Here is a configuration to change database column and parameter names to business ones:

<table>
<thead>
<tr>
<th>ID</th>
<th>TABLE_SCHEMA</th>
<th>TABLE_NAME</th>
<th>COLUMN_NAME</th>
<th>LANGUAGE</th>
<th>TRANSLATED_NAME</th>
<th>TRANSLATED_DESC</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>dbo67</td>
<td>Payments</td>
<td>AccountID</td>
<td>en</td>
<td>Account</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>dbo67</td>
<td>Payments</td>
<td>CompanyID</td>
<td>en</td>
<td>Company</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>dbo67</td>
<td>Payments</td>
<td>ItemID</td>
<td>en</td>
<td>Item</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>dbo67</td>
<td>uspPayments</td>
<td>AccountID</td>
<td>en</td>
<td>Account</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>dbo67</td>
<td>uspPayments</td>
<td>CompanyID</td>
<td>en</td>
<td>Company</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>dbo67</td>
<td>uspPayments</td>
<td>ItemID</td>
<td>en</td>
<td>Item</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>dbo67</td>
<td>viewPayments</td>
<td>AccountID</td>
<td>en</td>
<td>Account</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>dbo67</td>
<td>viewPayments</td>
<td>CompanyID</td>
<td>en</td>
<td>Company</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>dbo67</td>
<td>viewPayments</td>
<td>ItemID</td>
<td>en</td>
<td>Item</td>
<td></td>
</tr>
</tbody>
</table>

Configuring ribbon parameters

To configure ribbon parameters, use the ParameterValues table of the payments-configuration workbook:

<table>
<thead>
<tr>
<th>ID</th>
<th>TABLE_SCHEMA</th>
<th>TABLE_NAME</th>
<th>PARAMETER_NAME</th>
<th>SELECT_SCHEMA</th>
<th>SELECT_NAME</th>
<th>SELECT_TYPE</th>
<th>SELECT_CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>dbo67</td>
<td>uspPayments</td>
<td>AccountID</td>
<td>dbo67</td>
<td>Accounts</td>
<td>TABLE</td>
<td>ID,Name</td>
</tr>
<tr>
<td>2</td>
<td>dbo67</td>
<td>uspPayments</td>
<td>CompanyID</td>
<td>dbo67</td>
<td>Companies</td>
<td>TABLE</td>
<td>ID,Name</td>
</tr>
<tr>
<td>3</td>
<td>dbo67</td>
<td>uspPayments</td>
<td>ItemID</td>
<td>dbo67</td>
<td>Items</td>
<td>TABLE</td>
<td>ID,Name</td>
</tr>
</tbody>
</table>

The configuration is like the known EventHandlers table.

Thus, we use master tables to select ID and Name pairs for the ribbon parameters of the stored procedure.

Configuring saving changes

Let’s discuss this in the next important chapter.
Chapter 14. Configuring Saving Changes

Saving changes to a single table

If we need to save changes to a single underlying table, we may specify the target table in the INSERT_PROCEDURE, UPDATE_PROCEDURE, and DELETE_PROCEDURE fields of the QueryList table:

In this example, this is a right case as the procedure selects data from a single table.
Saving changes to multiple tables

You may save changes from an Excel table to multiple database tables. However, this requires using stored procedures or SQL codes. Let’s create such procedures for our example.

Here is the procedure used to insert new rows:

```sql
CREATE PROCEDURE [dbo67].[uspPayments_insert]
    @Date   datetime   = NULL,
    @Sum    money       = NULL,
    @AccountID int       = NULL,
    @CompanyID int       = NULL,
    @ItemID int          = NULL,
    @Comment nvarchar(255) = NULL
AS
BEGIN

SET NOCOUNT ON

INSERT INTO dbo67.Payments
    ( [Date], [Sum], AccountID, CompanyID, ItemID, Comment )
VALUES
    ( @Date, @Sum, @AccountID, @CompanyID, @ItemID, @Comment )

END
GO
```

You may see that the procedure has the parameters named as the selected column names. So, the add-in just calls the procedure passing values from a new row.

You may implement any logic in stored procedures. This procedure just inserts a row into the Payments table.
Here is the code of the update procedure:

```
CREATE PROCEDURE [dbo67].[uspPayments_update]
    @ID int,
    @Date datetime = NULL,
    @Sum money = NULL,
    @AccountID int = NULL,
    @CompanyID int = NULL,
    @ItemID int = NULL,
    @Comment nvarchar(255) = NULL
AS
BEGIN

    SET NOCOUNT ON

    UPDATE dbo67.Payments
    SET
        [Date] = @Date,
        [Sum] = @Sum,
        AccountID = @AccountID,
        CompanyID = @CompanyID,
        ItemID = @ItemID,
        Comment = @Comment
    WHERE
        ID = @ID

END
GO
```

You may see that the logic is the same. The procedure declares and uses parameters with the column names. The update procedure has the @ID parameter as the updated row exists. The insert procedure has not.

Here is the code of the delete procedure:

```
CREATE PROCEDURE [dbo67].[uspPayments_delete]
    @ID int
AS
BEGIN

    SET NOCOUNT ON

    DELETE dbo67.Payments
    WHERE
        ID = @ID

END
GO
```

In most cases, delete procedures use primary key column values only.
Now, we may replace the configuration created in the previous step to a new configuration with stored procedures:

After these steps, we have a completely configured stored procedure.

Let’s change a couple of rows and check the generated SQL code using the Save, View Save Change SQL button.

As we see, the add-in generated EXEC commands.

Using stored procedures to save changes is a common way. In this case, we have four procedures like these:

1. dbo67.uspPayments
2. dbo67.uspPayments_insert
3. dbo67.uspPayments_update
4. dbo67.uspPayments_delete

If you use the _insert, _update, and _delete name convention, the add-in links edit procedures automatically, and you may skip adding the configuration to the QueryList table.
Chapter 15. Cursors

Let’s select the Payments worksheet and click Wizards, Form Wizard, Add Cursor:

The add-in highlights the active table row:
Chapter 16. Form Fields

Let’s run the same wizard, click Add Form Fields and select cell K4:

The add-in inserts form fields and updates them when a user changes the active row.

Moreover, you may use such fields to edit table row values.
Chapter 17. Master-Details

Let’s create a new worksheet, rename it to **CompanyPayments**, and connect to the **Company** table at cell B3. Then let’s add a cursor and add form fields at cell F4.

Then let’s move the ID and Name fields to cells C1 and D1, and remove labels in column F:
Now, select cell F3 (outside of the active table) and connect to the **viewPayments** view.

In the connection wizard, select only the one **CompanyID** field in the **WHERE** column:

![Query Parameters - Payments (view)](image)

Select columns to place them to the Ribbon and to filter the data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>int</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>datetime</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>money</td>
<td></td>
</tr>
<tr>
<td>Account</td>
<td>int</td>
<td></td>
</tr>
<tr>
<td>Company</td>
<td>int</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>int</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>nvarchar(255)</td>
<td></td>
</tr>
</tbody>
</table>

and insert the table at cell F3:

![Insert Table](image)

We see that the **viewPayment** view has only one parameter at the ribbon, **Company**.

Also, we see the selected company ID in cell C1 that may be used as a parameter. Let’s link them.
Select cell C1 and click the **Define Name** button in the **Defined Names** group on the **Formulas** tab:

Specify the cell name as the parameter name, **CompanyID**, and select the worksheet name, **CompanyPayments**, in the **Scope** field:

Click **OK**. Then select a row in the Company table, and voilà!
Here is a list of events that implement this behavior:

1. A user selects another row in a master table.
2. The add-in updates form fields (cell C1 with ID).
3. The add-in changes parameters of the details view using named cell values (cell C1 as CompanyID).
4. The add-in reloads the details with new parameter values.

You may build more complex forms using the same technique.

For example, the Northwind example contains the following tables with master-detail relations:

1. Customer first char index (A-Z)
2. Customers
3. Customer orders
4. Orders
Chapter 18. Detail Windows and Task Panes

We may use another technique to show details in windows and task panes using the SelectionChange handlers.

Detail Windows

Let’s switch to the payments-configuration workbook, select the EventHandlers worksheet and add the data:

<table>
<thead>
<tr>
<th>ID</th>
<th>TABLE</th>
<th>TABLE_NAME</th>
<th>COLUMN</th>
<th>EVENT NAME</th>
<th>HANDLER</th>
<th>HANDLER_NAME</th>
<th>HANDLER_CODE</th>
<th>TARGET WORKSHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>dbo67</td>
<td>ViewPayments</td>
<td>SelectionChange</td>
<td>dbo67</td>
<td>Company Payments</td>
<td>CODE</td>
<td>SELECT p.[Date]</td>
<td>EventHandlers</td>
</tr>
<tr>
<td>36</td>
<td>dbo67</td>
<td>ViewPayments</td>
<td>SelectionChange</td>
<td>dbo67</td>
<td>Item Payments</td>
<td>CODE</td>
<td>SELECT p.[Date]</td>
<td>EventHandlers</td>
</tr>
</tbody>
</table>

The HANDLER_CODE of the Company Payments handler contains the code:

```sql
```

The HANDLER_CODE of the Item Payments handler contains the code:

```sql
SELECT p.[Date], p.[Sum], c.Name AS Company, i.Name AS Item, p.Comment FROM dbo67.Payments p INNER JOIN dbo67.Items i ON i.ID = p.ItemID LEFT OUTER JOIN dbo67.Companies c ON c.ID = p.CompanyID WHERE p.ItemID = @ItemID
```

As we may suppose, the add-in executes the specified code on the SelectionChange event.

The handlers use @CompanyId and @ItemID parameters accordingly to filter output data.
Let’s switch to the **payments** workbook, select the **Reports** worksheet, and select the **Payments (view)** view.

If the view is already activated, click **Reload, Reload Data and Configuration**.

Now, when we change a row, the add-in launches windows like this:

We may select another row. Windows will stay on top and show related information.

You may click on the window status line to see the executed SQL command like this:
In this example, we have used the direct SQL codes stored in the EventHandlers table. This is useful when you do not want to modify your database. Otherwise, you may use stored procedures with parameters.

Cell Editor

The SaveToDB add-in adds great support for editing codes in cells. When the cell contains a multiline value, the add-in launches the Cell Editor like this:

```
SELECT p.[Date], p.[Sum], c.Name AS Company, i.Name AS Item, p.Comment
FROM dbo67.Payments p
  LEFT OUTER JOIN dbo67.Items i ON i.ID = p.ItemID
  INNER JOIN dbo67.Companies c ON c.ID = p.CompanyID
WHERE p.CompanyID = @CompanyID
```

You may edit the text in the editor and click the Save button to update the underlying cell. You may turn on/off the editor using the Options, Show Cell Editor Task Pane option.

Task Panes

Use of detail windows is a good solution when you need windows that are always visible. If you need context windows, you may use task panes.

Let’s add the following handlers to the EventHandlers table for the uspPayments procedure:

<table>
<thead>
<tr>
<th>ID</th>
<th>TABLE</th>
<th>TABLE_NAME</th>
<th>COLUMN</th>
<th>HANDLER_NAME</th>
<th>HANDLER_NAME</th>
<th>HANDLER_CODE</th>
<th>TARGET_WORKSHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>dbo67</td>
<td>viewPayments</td>
<td>SelectionChange</td>
<td>dbo67</td>
<td>Company Payments</td>
<td>CODE</td>
<td>SELECT p.[Date]</td>
</tr>
<tr>
<td>36</td>
<td>dbo67</td>
<td>viewPayments</td>
<td>SelectionChange</td>
<td>dbo67</td>
<td>Item Payments</td>
<td>CODE</td>
<td>SELECT p.[Date]</td>
</tr>
<tr>
<td>37</td>
<td>dbo67</td>
<td>uspPayments</td>
<td>SelectionChange</td>
<td>dbo67</td>
<td>Company Payments</td>
<td>CODE</td>
<td>SELECT p.[Date] TaskPane</td>
</tr>
<tr>
<td>38</td>
<td>dbo67</td>
<td>uspPayments</td>
<td>SelectionChange</td>
<td>dbo67</td>
<td>Item Payments</td>
<td>CODE</td>
<td>SELECT p.[Date] TaskPane</td>
</tr>
</tbody>
</table>

I have copied the view rows, changed the view name, and added _TaskPane to the TARGET_WORKSHEET field. The HANDLER_CODE codes remain the same.
Let’s switch to the payments workbook, and change the query to the Payments (sp) procedure.

When we change a row, the add-in shows task panes like this:

Users may customize column formats:

Also, users may dock task panes and turn them on/off using the Options, Show Task Panes option.
Chapter 19. Context Menus

Detail windows and task panes discussed above are shown in the SelectionChange event.

We may add such queries and much more to the context menu.

Let’s add the following configuration to the EventHandlers table (two lines at the bottom):

<table>
<thead>
<tr>
<th>ID</th>
<th>TABLE</th>
<th>TABLE NAME</th>
<th>COLUMN</th>
<th>EVENT NAME</th>
<th>HANDLER NAME</th>
<th>HANDLER CODE</th>
<th>TARGET WORKSHEET</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>dbo67</td>
<td>viewPayments</td>
<td>SelectionChange</td>
<td>dbo67</td>
<td>Company Payments</td>
<td>CODE</td>
<td>SELECT p.[Date]</td>
</tr>
<tr>
<td>36</td>
<td>dbo67</td>
<td>viewPayments</td>
<td>SelectionChange</td>
<td>dbo67</td>
<td>Item Payments</td>
<td>CODE</td>
<td>SELECT p.[Date]</td>
</tr>
<tr>
<td>37</td>
<td>dbo67</td>
<td>uspPayments</td>
<td>SelectionChange</td>
<td>dbo67</td>
<td>Company Payments</td>
<td>CODE</td>
<td>SELECT p.[Date]</td>
</tr>
<tr>
<td>38</td>
<td>dbo67</td>
<td>uspPayments</td>
<td>SelectionChange</td>
<td>dbo67</td>
<td>Item Payments</td>
<td>CODE</td>
<td>SELECT p.[Date]</td>
</tr>
<tr>
<td></td>
<td>dbo67</td>
<td>Payments</td>
<td>ContextMenu</td>
<td>dbo67</td>
<td>Company Payments</td>
<td>CODE</td>
<td>SELECT p.[Date]</td>
</tr>
<tr>
<td></td>
<td>dbo67</td>
<td>Payments</td>
<td>ContextMenu</td>
<td>dbo67</td>
<td>Item Payments</td>
<td>CODE</td>
<td>SELECT p.[Date]</td>
</tr>
</tbody>
</table>

Then let’s switch to the payments workbook, select the Payments worksheet, click Reload, Reload Data and Configuration, and right click on a row:

When we click on the Company Payments item, the add-in shows the task pane like this:
As we learned above, the **SelectionChange** and **ContextMenu** handlers are nearly the same. They get parameters from the columns of the active row. They differ by the **EVENT_NAME** configuration.

However, the **ContextMenu** handlers support additional configuration parameters like **MENU_ORDER** and **EDIT_PARAMETERS**:

<table>
<thead>
<tr>
<th>EVENT_NAME</th>
<th>HANDLER_NAME</th>
<th>HANDLER</th>
<th>HANDLER_CODE</th>
<th>TARGET_WORKSHEET</th>
<th>MENU_ORDER</th>
<th>EDIT_PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ContextMenu</td>
<td>dbo067</td>
<td>Company Payments</td>
<td>CODE</td>
<td>SELECT p.[Date]</td>
<td>TaskPane</td>
<td></td>
</tr>
<tr>
<td>ContextMenu</td>
<td>dbo067</td>
<td>Item Payments</td>
<td>CODE</td>
<td>SELECT p.[Date]</td>
<td>TaskPane</td>
<td></td>
</tr>
</tbody>
</table>

and allow using much more handler types:

You may configure executing stored procedures, SQL codes, macros, CMD commands, opening URLs.

Use the **MenuSeparator** type to separate menu items.
Chapter 20. Actions Menus

The action menus are located at the ribbon and have nearly the same features as context menus. However, users may execute actions when the active cell is outside of the table. So, they may have no context.

Let’s add the Actions configuration and reload data and configuration at the Payments worksheet:
Conclusion

We have created a complete client application using Microsoft Excel.

Here are ten steps that we made:

1. Connect to tables, views, and stored procedures
2. Configure validation lists
3. Configure ribbon parameters
4. Translate field, parameter, and object names
5. Configure formats, formulas, and table views
6. Configure saving changes
7. Add cursors and form fields
8. Create master-detail forms
9. Configure detail windows and task panes
10. Configure context and action menus

Now you may create such applications yourself.

Creating applications this way has great benefits for you, for users, and for your company:

1. You may create databases and client applications using your database developer skills.
2. You create client applications that have all the features of Microsoft Excel.
4. You have no headache with deployment and updates.
5. Users are happy as they use Microsoft Excel, the app with the best features and user experience.
6. Users are happy as they use personal, not shared, workbooks and do not depend on others.
7. Your company may solve tasks creating applications with lower risks and lower costs in a shorter time.

This book contains an example database for Microsoft SQL Server.
You may also use Oracle Database, IBM DB2, MySQL, MariaDB, PostgreSQL, NuoDB, or SQLite.

You may download the SaveToDB add-in at www.savetodb.com.
All features described in this book are available in the free SaveToDB Express edition.

I would appreciate your feedback. Feel free to contact me at 10-steps@savetodb.com.

Happy coding!
Sergey Vaselenko
About the Author

My name is Sergey Vaselenko.
I am from Russia, Moscow.
My passion is creating software.
I am a founder and CEO of Gartle Technology Corporation and a leading developer of the SaveToDB add-in.

You are welcome to contact me at
www.facebook.com/sergey.vaselenko
www.linkedin.com/in/vaselenko/
Appendix 1. Database Source Code

You may download the source code at

You may download the SaveToDB add-in at www.savetodb.com.

To use all described features, install version SaveToDB 7.2 or higher.

Master Tables

```sql
CREATE TABLE [dbo67].[Accounts] (  
    [ID] int IDENTITY(1,1) NOT NULL  
    , [Name] nvarchar(50) NOT NULL  
    , CONSTRAINT [PK_Accounts_dbo67] PRIMARY KEY ([ID])  
    , CONSTRAINT [IX_Accounts_dbo67] UNIQUE ([Name])  
) GO

CREATE TABLE [dbo67].[Companies] (  
    [ID] int IDENTITY(1,1) NOT NULL  
    , [Name] nvarchar(50) NOT NULL  
    , CONSTRAINT [PK_Companies_dbo67] PRIMARY KEY ([ID])  
    , CONSTRAINT [IX_Companies_dbo67] UNIQUE ([Name])  
) GO

CREATE TABLE [dbo67].[Items] (  
    [ID] int IDENTITY(1,1) NOT NULL  
    , [Name] nvarchar(50) NOT NULL  
    , CONSTRAINT [PK_Items_dbo67] PRIMARY KEY ([ID])  
    , CONSTRAINT [IX_Items_dbo67] UNIQUE ([Name])  
) GO

Add UNIQUE constraints to your tables to avoid name doubles.
Table dbo67.Payments

```sql
CREATE TABLE [dbo67].[Payments] (
 [ID] int IDENTITY(1,1) NOT NULL,
 [Date] datetime NULL,
 [Sum] money NULL,
 [AccountID] int NULL,
 [CompanyID] int NULL,
 [ItemID] int NULL,
 [Comment] nvarchar(255) NULL,
 CONSTRAINT [PK_Payments_dbo67] PRIMARY KEY ([ID])
) GO

ALTER TABLE [dbo67].[Payments] ADD CONSTRAINT [FK_Payments_Accounts_dbo67]
FOREIGN KEY ([AccountID]) REFERENCES [dbo67].[Accounts] ([ID]) ON UPDATE CASCADE GO

ALTER TABLE [dbo67].[Payments] ADD CONSTRAINT [FK_Payments_Companies_dbo67]
FOREIGN KEY ([CompanyID]) REFERENCES [dbo67].[Companies] ([ID]) ON UPDATE CASCADE GO

ALTER TABLE [dbo67].[Payments] ADD CONSTRAINT [FK_Payments_Items_dbo67]
FOREIGN KEY ([ItemID]) REFERENCES [dbo67].[Items] ([ID]) ON UPDATE CASCADE GO
```

View dbo67.viewPayments

```sql
CREATE VIEW [dbo67].[viewPayments]
AS
SELECT
 p.ID,
 p.[Date],
 p.[Sum],
 p.AccountID,
 p.CompanyID,
 p.ItemID,
 p.Comment
FROM
 dbo67.Payments p
GO
```

The view selects data from a single table that makes it updateable.

You may use INSERT, UPDATE, and DELETE statements for such views directly. The add-in uses this feature.
Stored Procedure dbo67.uspPayments

```
CREATE PROCEDURE [dbo67].[uspPayments]
 @AccountID int = NULL
 , @CompanyID int = NULL
 , @ItemID int = NULL
AS
BEGIN

SET NOCOUNT ON

SELECT
 p.ID
 , p.[Date]
 , p.[Sum]
 , p.AccountID
 , p.CompanyID
 , p.ItemID
 , p.Comment

FROM
 dbo67.Payments p
WHERE
 COALESCE(@AccountID, p.AccountID, 0) = COALESCE(p.AccountID, 0)
AND COALESCE(@CompanyID, p.CompanyID, 0) = COALESCE(p.CompanyID, 0)
AND COALESCE(@ItemID, p.ItemID, 0) = COALESCE(p.ItemID, 0)

END
GO
```

The stored procedure has parameters used to filter source table data. The NULL value means “all values.”

Use **SET NOCOUNT ON** as the first command. Otherwise, Excel cannot load data from the procedure.